Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; : e0204323, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37909744

RESUMO

Zymomonas mobilis is an alpha-proteobacterium that is a promising platform for industrial scale production of biofuels due to its efficient ethanol fermentation and low biomass generation. Z. mobilis is aerotolerant and encodes a complete respiratory electron transport chain, but the benefit of respiration for growth in oxic conditions has never been confirmed, despite decades of research. Growth and ethanol production of wild-type Z. mobilis is poor in oxic conditions indicating that it does not benefit from oxidative phosphorylation. Additionally, in previous studies, aerobic growth improved significantly when respiratory genes were disrupted (ndh) or acquired point mutations (cydA and cydB), even if respiration was significantly reduced by these changes. Here, we obtained clean deletions of respiratory genes ndh and cydAB, individually and in combination, and showed, for the first time, that deletion of cydAB completely inhibited O2 respiration and dramatically reduced growth in oxic conditions. Both respiration and aerobic growth were restored by expressing a heterologous, water-forming NADH oxidase, noxE. Oxygen can have many negative effects, including formation of reactive oxygen species (ROS) or directly inactivating oxygen sensitive enzymes. Our results suggest that the effect of molecular oxygen on enzymes had a greater negative impact on Z. mobilis than formation of ROS. This result shows that the main role of the electron transport chain in Z. mobilis is reducing the intracellular concentration of molecular oxygen, helping to explain why it is beneficial for Z. mobilis to use electron transport chain complexes that have little capacity to contribute to oxidative phosphorylation. IMPORTANCE A key to producing next-generation biofuels is to engineer microbes that efficiently convert non-food materials into drop-in fuels, and to engineer microbes effectively, we must understand their metabolism thoroughly. Zymomonas mobilis is a bacterium that is a promising candidate biofuel producer, but its metabolism remains poorly understood, especially its metabolism when exposed to oxygen. Although Z. mobilis respires with oxygen, its aerobic growth is poor, and disruption of genes related to respiration counterintuitively improves aerobic growth. This unusual result has sparked decades of research and debate regarding the function of respiration in Z. mobilis. Here, we used a new set of mutants to determine that respiration is essential for aerobic growth and likely protects the cells from damage caused by oxygen. We conclude that the respiratory pathway of Z. mobilis should not be deleted from chassis strains for industrial production because this would yield a strain that is intolerant of oxygen, which is more difficult to manage in industrial settings.

2.
mBio ; : e0148723, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37905909

RESUMO

Reduced genome bacteria are genetically simplified systems that facilitate biological study and industrial use. The free-living alphaproteobacterium Zymomonas mobilis has a naturally reduced genome containing fewer than 2,000 protein-coding genes. Despite its small genome, Z. mobilis thrives in diverse conditions including the presence or absence of atmospheric oxygen. However, insufficient characterization of essential and conditionally essential genes has limited broader adoption of Z. mobilis as a model alphaproteobacterium. Here, we use genome-scale CRISPRi-seq (clustered regularly interspaced short palindromic repeats interference sequencing) to systematically identify and characterize Z. mobilis genes that are conditionally essential for aerotolerant or anaerobic growth or are generally essential across both conditions. Comparative genomics revealed that the essentiality of most "generally essential" genes was shared between Z. mobilis and other Alphaproteobacteria, validating Z. mobilis as a reduced genome model. Among conditionally essential genes, we found that the DNA repair gene, recJ, was critical only for aerobic growth but reduced the mutation rate under both conditions. Further, we show that genes encoding the F1FO ATP synthase and Rhodobacter nitrogen fixation (Rnf) respiratory complex are required for the anaerobic growth of Z. mobilis. Combining CRISPRi partial knockdowns with metabolomics and membrane potential measurements, we determined that the ATP synthase generates membrane potential that is consumed by Rnf to power downstream processes. Rnf knockdown strains accumulated isoprenoid biosynthesis intermediates, suggesting a key role for Rnf in powering essential biosynthetic reactions. Our work establishes Z. mobilis as a streamlined model for alphaproteobacterial genetics, has broad implications in bacterial energy coupling, and informs Z. mobilis genome manipulation for optimized production of valuable isoprenoid-based bioproducts. IMPORTANCE The inherent complexity of biological systems is a major barrier to our understanding of cellular physiology. Bacteria with markedly fewer genes than their close relatives, or reduced genome bacteria, are promising biological models with less complexity. Reduced genome bacteria can also have superior properties for industrial use, provided the reduction does not overly restrict strain robustness. Naturally reduced genome bacteria, such as the alphaproteobacterium Zymomonas mobilis, have fewer genes but remain environmentally robust. In this study, we show that Z. mobilis is a simplified genetic model for Alphaproteobacteria, a class with important impacts on the environment, human health, and industry. We also identify genes that are only required in the absence of atmospheric oxygen, uncovering players that maintain and utilize the cellular energy state. Our findings have broad implications for the genetics of Alphaproteobacteria and industrial use of Z. mobilis to create biofuels and bioproducts.

3.
J Bacteriol ; 204(4): e0056321, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35258321

RESUMO

Zymomonas mobilis is a promising bacterial host for biofuel production, but further improvement has been hindered because some aspects of its metabolism remain poorly understood. For example, one of the main by-products generated by Z. mobilis is acetate, but the pathway for acetate production is unknown. Acetaldehyde oxidation has been proposed as the major source of acetate, and an acetaldehyde dehydrogenase was previously isolated from Z. mobilis via activity guided fractionation, but the corresponding gene has never been identified. We determined that the locus ZMO1754 (also known as ZMO_RS07890) encodes an NADP+-dependent acetaldehyde dehydrogenase that is responsible for acetate production by Z. mobilis. Deletion of this gene from the chromosome resulted in a growth defect in oxic conditions, suggesting that acetaldehyde detoxification is an important role of acetaldehyde dehydrogenase. The deletion strain also exhibited a near complete abolition of acetate production, both in typical laboratory conditions and during lignocellulosic hydrolysate fermentation. Our results show that ZMO1754 encodes the major acetate-forming acetaldehyde dehydrogenase in Z. mobilis, and we therefore rename the gene aldB based on functional similarity to the Escherichia coli acetaldehyde dehydrogenase. IMPORTANCE Biofuel production from nonfood crops is an important strategy for reducing carbon emissions from the transportation industry, but it has not yet become commercially viable. An important avenue to improve biofuel production is to enhance the characteristics of fermentation organisms by decreasing by-product formation via genetic engineering. Here, we identified and deleted a metabolic pathway and associated gene that lead to acetate formation in Zymomonas mobilis. Acetate is one of the major by-products generated during ethanol production by Z. mobilis, so this information may be used in the future to develop better strains for commercial biofuel production.


Assuntos
Zymomonas , Acetaldeído/metabolismo , Acetatos/metabolismo , Aldeído Oxirredutases , Biocombustíveis , Escherichia coli/metabolismo , Fermentação , NADP/metabolismo , Zymomonas/genética , Zymomonas/metabolismo
4.
Biotechnol Biofuels ; 14(1): 112, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33933155

RESUMO

BACKGROUND: Zymomonas mobilis is an aerotolerant α-proteobacterium, which has been genetically engineered for industrial purposes for decades. However, a comprehensive comparison of existing strains on the genomic level in conjunction with phenotype analysis has yet to be carried out. We here performed whole-genome comparison of 17 strains including nine that were sequenced in this study. We then compared 15 available Zymomonas strains for their natural abilities to perform under conditions relevant to biofuel synthesis. We tested their growth in anaerobic rich media, as well as growth, ethanol production and xylose utilization in lignocellulosic hydrolysate. We additionally compared their tolerance to isobutanol, flocculation characteristics, and ability to uptake foreign DNA by electroporation and conjugation. RESULTS: Using clustering based on 99% average nucleotide identity (ANI), we classified 12 strains into four clusters based on sequence similarity, while five strains did not cluster with any other strain. Strains belonging to the same 99% ANI cluster showed similar performance while significant variation was observed between the clusters. Overall, conjugation and electroporation efficiencies were poor across all strains, which was consistent with our finding of coding potential for several DNA defense mechanisms, such as CRISPR and restriction-modification systems, across all genomes. We found that strain ATCC31821 (ZM4) had a more diverse plasmid profile than other strains, possibly leading to the unique phenotypes observed for this strain. ZM4 also showed the highest growth of any strain in both laboratory media and lignocellulosic hydrolysate and was among the top 3 strains for isobutanol tolerance and electroporation and conjugation efficiency. CONCLUSIONS: Our findings suggest that strain ZM4 has a unique combination of genetic and phenotypic traits that are beneficial for biofuel production and propose investing future efforts in further engineering of ZM4 for industrial purposes rather than exploring new Zymomonas isolates.

5.
Front Microbiol ; 10: 2270, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31611868

RESUMO

Zymomonas mobilis is a bacterium that produces ethanol from glucose at up to 97% of theoretical efficiency on a carbon basis. One factor contributing to the high efficiency of ethanol production is that Z. mobilis has a low biomass yield. The low biomass yield may be caused partly by the low ATP yield of the Entner-Doudoroff (ED) glycolytic pathway used by Z. mobilis, which produces only one ATP per glucose consumed. To test the hypothesis that ATP yield limits biomass yield in Z. mobilis, we attempted to introduce the Embden-Meyerhof-Parnas (EMP) glycolytic pathway (with double the ATP yield) by expressing phosphofructokinase (Pfk I) from Escherichia coli. Expression of Pfk I caused growth inhibition and resulted in accumulation of mutations in the pfkA gene. Co-expression of additional EMP enzymes, fructose bisphosphate aldolase (Fba) and triose phosphate isomerase (Tpi), with Pfk I did not enable EMP flux, and resulted in production of glycerol as a side product. Further analysis indicated that heterologous reactions may have operated in the reverse direction because of native metabolite concentrations. This study reveals how the metabolomic context of a chassis organism influences the range of pathways that can be added by heterologous expression.

6.
J Biol Chem ; 292(51): 20871-20882, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29070678

RESUMO

Former studies relying on hydrogen/deuterium exchange analysis suggest that DnaC bound to DnaB alters the conformation of the N-terminal domain (NTD) of DnaB to impair the ability of this DNA helicase to interact with primase. Supporting this idea, the work described herein based on biosensor experiments and enzyme-linked immunosorbent assays shows that the DnaB-DnaC complex binds poorly to primase in comparison with DnaB alone. Using a structural model of DnaB complexed with the C-terminal domain of primase, we found that Ile-85 is located at the interface in the NTD of DnaB that contacts primase. An alanine substitution for Ile-85 specifically interfered with this interaction and impeded DnaB function in DNA replication, but not its activity as a DNA helicase or its ability to bind to ssDNA. By comparison, substitutions of Asn for Ile-136 (I136N) and Thr for Ile-142 (I142T) in a subdomain previously named the helical hairpin in the NTD of DnaB altered the conformation of the helical hairpin and/or compromised its pairwise arrangement with the companion subdomain in each brace of protomers of the DnaB hexamer. In contrast with the I85A mutant, the latter were defective in DNA replication due to impaired binding to both ssDNA and primase. In view of these findings, we propose that DnaC controls the ability of DnaB to interact with primase by modifying the conformation of the NTD of DnaB.


Assuntos
DNA Primase/metabolismo , DnaB Helicases/metabolismo , Proteínas de Escherichia coli/metabolismo , Trifosfato de Adenosina/metabolismo , Substituição de Aminoácidos , Sítios de Ligação/genética , DNA Primase/química , Replicação do DNA , DNA Bacteriano/metabolismo , DNA de Cadeia Simples/metabolismo , DnaB Helicases/química , DnaB Helicases/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Geobacillus stearothermophilus/enzimologia , Geobacillus stearothermophilus/genética , Hidrólise , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas
7.
J Biol Chem ; 291(9): 4803-12, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26728455

RESUMO

The DnaB-DnaC complex binds to the unwound DNA within the Escherichia coli replication origin in the helicase loading process, but the biochemical events that lead to its stable binding are uncertain. This study characterizes the function of specific C-terminal residues of DnaC. Genetic and biochemical characterization of proteins bearing F231S and W233L substitutions of DnaC reveals that their activity is thermolabile. Because the mutants remain able to form a complex with DnaB at 30 and 37 °C, their thermolability is not explained by an impaired interaction with DnaB. Photo-cross-linking experiments and biosensor analysis show an altered affinity of these mutants compared with wild type DnaC for single-stranded DNA, suggesting that the substitutions affect DNA binding. Despite this difference, their activity in DNA binding is not thermolabile. The substitutions also drastically reduce the affinity of DnaC for ATP as measured by the binding of a fluorescent ATP analogue (MANT-ATP) and by UV cross-linking of radiolabeled ATP. Experiments show that an elevated temperature substantially inhibits both mutants in their ability to load the DnaB-DnaC complex at a DnaA box. Because a decreased ATP concentration exacerbates their thermolabile behavior, we suggest that the F231S and W233L substitutions are thermolabile in ATP binding, which correlates with defective helicase loading at an elevated temperature.


Assuntos
Proteínas de Bactérias/metabolismo , DNA Helicases/metabolismo , DNA Bacteriano/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , DnaB Helicases/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Alelos , Substituição de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Sequência Conservada , DNA Helicases/química , DNA Helicases/genética , Replicação do DNA , DNA Bacteriano/química , DNA de Cadeia Simples/química , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , DnaB Helicases/química , DnaB Helicases/genética , Estabilidade Enzimática , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Temperatura Alta/efeitos adversos , Cinética , Mutação , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Origem de Replicação
8.
Nucleic Acids Res ; 41(22): 10254-67, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23990329

RESUMO

DnaA is the initiator of DNA replication in bacteria. A mutant DnaA named DnaAcos is unusual because it is refractory to negative regulation. We developed a genetic method to isolate other mutant DnaAs that circumvent regulation to extend our understanding of mechanisms that control replication initiation. Like DnaAcos, one mutant bearing a tyrosine substitution for histidine 202 (H202Y) withstands the regulation exerted by datA, hda and dnaN (ß clamp), and both DnaAcos and H202Y resist inhibition by the Hda-ß clamp complex in vitro. Other mutant DnaAs carrying G79D, E244K, V303M or E445K substitutions are either only partially sensitive or refractory to inhibition by the Hda-ß clamp complex in vitro but are responsive to hda expression in vivo. All mutant DnaAs remain able to interact directly with Hda. Of interest, both DnaAcos and DnaAE244K bind more avidly to Hda. These mutants, by sequestrating Hda, may limit its availability to regulate other DnaA molecules, which remain active to induce extra rounds of DNA replication. Other evidence suggests that a mutant bearing a V292M substitution hyperinitiates by escaping the effect of an unknown regulatory factor. Together, our results provide new insight into the mechanisms that regulate replication initiation in Escherichia coli.


Assuntos
Proteínas de Bactérias/genética , Replicação do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Escherichia coli/genética , Mutação , Adenosina Trifosfatases/metabolismo , Alelos , Proteínas de Bactérias/metabolismo , DNA Polimerase III/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Origem de Replicação
9.
J Bacteriol ; 194(9): 2152-64, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22343303

RESUMO

Elevated levels of DnaA cause excessive initiation, which leads to an increased level of double-strand breaks that are proposed to arise when newly formed replication forks collide from behind with stalled or collapsed forks. These double-strand breaks are toxic in mutants that are unable to repair them. Using a multicopy suppressor assay to identify genes that suppress this toxicity, we isolated a plasmid carrying a gene whose function had been unknown. This gene, carried by the cryptic rac prophage, has been named rcbA for its ability to reduce the frequency of chromosome breaks. Our study shows that the colony formation of strains bearing mutations in rep, recG, and rcbA, like recA and recB mutants, is inhibited by an oversupply of DnaA and that a multicopy plasmid carrying rcbA neutralizes this inhibition. These and other results suggest that rcbA helps to maintain the integrity of the bacterial chromosome by lowering the steady-state level of double-strand breaks.


Assuntos
Quebra Cromossômica , Cromossomos Bacterianos/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Quebras de DNA de Cadeia Dupla , DNA Helicases/genética , DNA Helicases/metabolismo , DNA Bacteriano/genética , Proteínas de Escherichia coli/genética , Genótipo , Plasmídeos/genética
10.
Nucleic Acids Res ; 39(10): 4180-91, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21288885

RESUMO

We purified an inhibitor of oriC plasmid replication and determined that it is a truncated form of ribosomal protein L2 evidently lacking 59 amino acid residues from the C-terminal region encoded by rplB. We show that this truncated form of L2 or mature L2 physically interacts with the N-terminal region of DnaA to inhibit initiation from oriC by apparently interfering with DnaA oligomer formation, and the subsequent assembly of the prepriming complex on an oriC plasmid. Both forms of L2 also inhibit the unwinding of oriC by DnaA. These in vitro results raise the possibility that one or both forms of L2 modulate DnaA function in vivo to regulate the frequency of initiation.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Replicação do DNA , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Escherichia coli/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas Ribossômicas/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , DNA Bacteriano/metabolismo , DNA Super-Helicoidal/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/química , Fragmentos de Peptídeos/química , Plasmídeos/biossíntese , Origem de Replicação , Proteínas Ribossômicas/química , Deleção de Sequência
11.
Mol Microbiol ; 72(6): 1348-63, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19432804

RESUMO

Mutants of dnaAcos are inviable at 30 degrees C because DnaAcos hyperinitiates, leading to new replication forks that apparently collide from behind with stalled forks, thereby generating lethal double-strand breaks. By comparison, an elevated level of DnaA also induces extra initiations, but lethality occurs only in strains defective in repairing double-strand breaks. To explore the model that the chromosomal level of DnaAcos, or the increased abundance of DnaA, increases initiation frequency by, escaping or overcoming pathways that control initiation, respectively, we developed a genetic selection and identified seqA, datA, dnaN and hda, which function in pathways that either act at oriC or modulate DnaA activity. To assess each pathway's relative effectiveness, we used genetically inactivated strains, and quantified initiation frequency after elevating the level of DnaA. The results indicate that the hda-dependent pathway has a stronger effect on initiation than pathways involving seqA and datA. Testing the model that DnaAcos overinitiates because it fails to respond to one or more regulatory mechanisms, we show that dnaAcos is unresponsive to hda and dnaN, which encodes the beta clamp, and also datA, a locus proposed to titer excess DnaA. These results explain how DnaAcos hyperinitiates to interfere with viability.


Assuntos
Proteínas de Bactérias/metabolismo , Replicação do DNA , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Proteínas de Bactérias/genética , Reparo do DNA , Proteínas de Ligação a DNA/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Biblioteca Genômica , Plasmídeos
12.
Mol Microbiol ; 67(4): 781-92, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18179598

RESUMO

Escherichia coli HU protein is a dimer encoded by two closely related genes whose expression is growth phase-dependent. As a major component of the bacterial nucleoid, HU binds to DNA non-specifically, but acts at the chromosomal origin (oriC) during initiation by stimulating strand opening in vitro. We show that the alpha dimer of HU is more active than other forms of HU in initiation of an oriC-containing plasmid because it more effectively promotes strand opening of oriC. Other results demonstrate that HU stabilizes the DnaA oligomer bound to oriC, and that the alpha subunit of HU interacts with the N-terminal region of DnaA. These observations support a model whereby DnaA interacts with the alpha dimer or the alphabeta heterodimer, depending on their cellular abundance, to recruit the respective form of HU to oriC. The greater activity of the alpha dimer of HU at oriC may stimulate initiation during early log phase compared with the lesser activity of the alphabeta heterodimer or the beta dimer.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Complexo de Reconhecimento de Origem/metabolismo , Origem de Replicação , Escherichia coli/genética , Plasmídeos
13.
J Biol Chem ; 280(26): 24627-33, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15878847

RESUMO

In the initiation of bacterial DNA replication, DnaA protein recruits DnaB helicase to the chromosomal origin, oriC, leading to the assemble of the replication fork machinery at this site. Because a region near the N terminus of DnaA is required for self-oligomerization and the loading of DnaB helicase at oriC, we asked if these functions are separable or interdependent by substituting many conserved amino acids in this region with alanine to identify essential residues. We show that alanine substitutions of leucine 3, phenylalanine 46, and leucine 62 do not affect DnaA function in initiation. In contrast, we find on characterization of a mutant DnaA that tryptophan 6 is essential for DnaA function because its substitution by alanine abrogates self-oligomerization, resulting in the failure to load DnaB at oriC. These results indicate that DnaA bound to oriC forms a specific oligomeric structure, which is required to load DnaB helicase.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/fisiologia , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/fisiologia , Escherichia coli/metabolismo , Origem de Replicação , Triptofano/química , Trifosfato de Adenosina/química , Alanina/química , Motivos de Aminoácidos , Reagentes de Ligações Cruzadas/farmacologia , DNA/química , Análise Mutacional de DNA , Relação Dose-Resposta a Droga , Glutaral/química , Leucina/química , Mutação , Fenilalanina/química , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Fatores de Tempo
14.
J Biol Chem ; 279(49): 51156-62, 2004 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-15371441

RESUMO

Escherichia coli DnaA protein initiates DNA replication from the chromosomal origin, oriC, and regulates the frequency of this process. Structure-function studies indicate that the replication initiator comprises four domains. Based on the structural similarity of Aquifex aeolicus DnaA to other AAA+ proteins that are oligomeric, it was proposed that Domain III functions in oligomerization at oriC (Erzberger, J. P., Pirruccello, M. M., and Berger, J. M. (2002) EMBO J. 21, 4763-4773). Because the Box VII motif within Domain III is conserved among DnaA homologues and may function in oligomerization, we substituted conserved Box VII amino acids of E. coli DnaA with alanine by site-directed mutagenesis to examine the role of this motif. All mutant proteins are inactive in initiation from oriC in vivo and in vitro, but they support RK2 plasmid DNA replication in vivo. Thus, RK2 requires only a subset of DnaA functions for plasmid DNA replication. Biochemical studies on a mutant DnaA carrying an alanine substitution at arginine 281 (R281A) in Box VII show that it is inactive in in vitro replication of an oriC plasmid, but this defect is not from the failure to bind to ATP, DnaB in the DnaB-DnaC complex, or oriC. Because the mutant DnaA is also active in the strand opening of oriC, whereas DnaB fails to bind to this unwound region, the open structure is insufficient by itself to load DnaB helicase. Our results show that the mutant fails to form a stable oligomeric DnaA-oriC complex, which is required for the loading of DnaB.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/fisiologia , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/fisiologia , Escherichia coli/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/fisiologia , Trifosfato de Adenosina/química , Alanina/química , Alelos , Motivos de Aminoácidos , Arginina/química , DNA Helicases/fisiologia , DnaB Helicases , Relação Dose-Resposta a Droga , Hidrólise , Mutagênese Sítio-Dirigida , Mutação , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Origem de Replicação , Relação Estrutura-Atividade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...